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Application of Complex Ray Theory in EM4 Scattering ard RCS Analysis

Ruan. Yin=.hena (University of Electronic Science and Technology of China.
Chenadu)

(Manuscript received in November. 1987, and revised in October, 1988. This

topic was sponsored by the National Educational Foundation.)

Ari-r--Ct:-A The complex ray theory provides a simple and useful approach

for the analysis of the propagation and scattering of HF EJ4 waves in

various complicated environments. This paper deals with complex ray fields

in free space, reflection and refraction at a single interface, multiple

reflections and transmission through a layered medium, total reflection and

critical reflection at a planar interface, diffraction at an edge, complex

ray expansion and superposition. as well as RCS calculation by complex ray

method. In addition. some numerical results are given. " ;ri " -/K'-,?,-

i. Complex Ray in Free Spacef[-5]

Complex ray theory is a theory developed in the 70's to obtain an

approximation solution to the high frequency wave field problems. In the

80's. due to the rapid progress in the computer technology, the theory of

complex ray theory has received wide application in the electromagnetic-

wave related fields such as laser, optical fiber, antenna, and microwave

and the elastic wave fields such as water sourd and earthquake wave. The

purpose of this paper is to discuss the application of complex ray theory

in the study of high frequency electromagnetic scattering ad amlyzis of

radar cross section.

According to analytical expansion principle of complex function, if the

ma'witude of the imaginary part of the coordinate of the waver souce is
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given, the complex source point with complex coordinate can be obtained.

These rays propagating in the complex space from the complex source and are

called the complex rays. Following the traditional ray theory and methods,

the trace of the complex rays can be followed and the ray field can be

calculated.

In order to simplify the problem, the discussion in this paper was based

on a two-dimensional structure (A/F). Fig i sh ows the free space. A

wave vector b was defined at the source of the polarized linear electrical

current S(ys,z s ) along the x direction. The parameter b was called the wave

width parameter and the directional angle ab was called the wave

directional angle of the vector b (see figure 1). The comrdirate of the

complex source was defined as 2 s)

Iy,+jbce&a., Zam=sa+ibhiS. (1)

Usina the cylindrical Bogarin function for expanion, the field expression

at the observation point P(y,z) of the two-dimensional complex source

(ignoring the time factor exp(-jwt)) is

(2)

where the complex distance is

(3)

In the real space, the plane that passes tra S p*Uvt mnd is

perpendicular to the vector b is defined as the caliber plane of the

complex source (see figure 1). On this caliber plane, the ocmplex source

point field has the uniform phase distribution and the Gaussian-type

amplitude distribution and its remote radiation field is also a Gaussian-
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Fiau-e I: Two-dimensaonal complex source point arxd its caliber field
distribution

key: I - caliber circle
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type fixed-directional radiation wave. Therefore, it is appropriate to use

the complex source point field to simulate the concentrated waves such as

the mono-pulse laser wave or the radar antenna major wave front. Based on

the conclusion of the real-space ray optics and after simple analysis and

expansion, the transmission and scattering of the wave field can be solved.

Since the physical optical integration or the plane wave spectrum

integration of the caliber field is avoided, the rnerical process was made

even simpler.

in this paper. we will briefly introduce the various methods of the

complex ray theory, including the complex ray tracing method, the near-axis

approximation method, the agglomeration ray method, the complex ray

diffraction method. the complex ray expansion method, and the application

of these methods in the calculation of the scatterin_ field and analysis of

Lhe radar cross section.

II. Reflection and Refraction of Complex Rays [6,7]

Corsiderir .- the two-dimensional random curved surface f(y,z)=O shown in

ficure 2. for the complex source S defined in equation (1) and the

observation ooint P. a complex ray which passes through a point A on the

curved surface and reaches point P can be obtained through iteration

process. This ray should satisfy the complex space Feima principle with the

complex liaht distance as the limit value

dEL (l)L +L(8)J -
- Q (4)

where L1 and L2 are the complex distances for the incident and the

reflected paths ari a is the complex reflected angle (see figure 2).

Therefore. the field at point P can be written as

4
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where R(9) and 5(g) are the complex reflection and complex diffusion

functions. These functions can be obtained by substituting the incident

angle.0 in the real space with the complex incident angle 8. The method

which uses the iteration technique to trace the complex ray parameter (such

as the complex reflected angle d[) is called the complex ray tracing method.

Obviously, tremendous computer time is required in the tracing process.

In order to simplify the numerical process, the near-axis approximation

can be used. [6,7] It only requires the tracing of the real trace along the

wave axial line. then the complex ray field Eo at the axial observation

point Po can be calculated approximately and then the complex ray field at

the near-axis observation Doint P can be obtained through the micro-

disturbance correction of complex phase and oplex amplitude

= g"' " "'"(6)

where

E" w 14- "00 F. O I (L io L24- 19)'(7

The g in equation (6) denotes the complex phase correction and anr 7D

are the corrections for the reflection and diffusion functions. They are

all functions of the near-axis distance d and can be expanded by Taylor's

series. (In Taylor's series expansion, only the first term should be

considered for approximation calculation. [6,71)

For the complex rays that penetrate through the interface and into

another medium, the complex expansion should be based on the gnare's law

6
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and the results of the refraction of complex rays should be similar to

three of the reflection of complex rays.

III. Continuous Refraction and Muitiple Reflection of Complex Rays [8 - 1 1 ]

In the layered homoceneous medium shown in figure 4. the complex rays

can reach the observation point after multiple reflectior and refractions.

Therefore. the total field at point P should be the summation of all the

possible complex ray fields

where EM denotes the complex ray field which reaces point P after M times

of refheeion btween the two layers (see figure 4). The calculation can

be proceJed-ed w~th either complex ray tracing method or the near--xis

approximat ion methcvd [8)

7 9 x -k.L1. (9 )

wnere T-t_2 as the coefficient of refraction of this double-refraction.

Aw- ii F. a- the total coefficient of reflection after M times of
reflectiont. 5,- sr '. is the total diffusion coefficient, and P.- L.+.,7 L.+ r,

ic the total complex light distance. They can all be solved frm the

complex ray paths. [8-101

In order to simDlr.fv the summation process of the infinite series in

equation (8), the residual terms from the M-th term can be treated

together. If the thickness of these layers is uniform or if the incident

ray is near the normal vector of the curved surface, then the residual

terms can be expressed, after Fourier transformation and integration

approximation caicuiation, as[:iI

8
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- ' (10)

Comparison of eauations (8) and (10) shows that the oumtion of these

residual terms can be reaarded as the contribution from the M-th complex

ray. It would only require to replace the trarmission coefficient T in

equation (8) by the transmission coefficient of the agglomeration of the

rays Tc. Therefore, equation (8) can be re-written as the mixed-field

structure of the ordinary rays and the acglomeration rays

W- (11)N-.

The numerical results shew that a satisfactory scattering field remit,

from a engineeringr standpoint, can be obtained with M-0 (no ordinary rays,

only the agglomeration rays) or M=l (one ordinary ray, aid the

agglomeration rays).

IV. Total Reflection and Critical Reflection of Complex Rays [12-14]

When the complex ray field with Gaussian wave front is incident from a

optically less dense medium to an optically more dense medium and if on the

interface (see figure 5, e,>,), the incident anrle E is less than the total

reflection critical angle 0,-.u-sa/E .t en there exists only the

geometrical optical reflection field %. t1dc(h is the contribution from the

complex ray field to the independent saddle point and is expressed in terms

of the intearation of the plane wave spectrum

where

10
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When the incident angle is greater than the critical angle, the total

reflection field of the complex ray should include both the contributions

to the independent saddle point Es and to the independent supporting point

Eb[12=14' from the geometrical optical field f% and the complex lateral

-wave field fi; namely

(14)

where

A - ise

eg tit s I(IrT*tSrS3

(Ita)s'" (15)

where L1. L2. and L3 denote the transmission paths of the lateral waves as

shown in fi ire 5. Obviously, when 2 L2->G nd equation (15) gives the

auantitative results of the spreading field and there exists a transition

region of the complex ray reflection field. In order to make the

sinacularity of the transition field smooth, a uniform equation which

includes the transitional function should be used. In other words, the

asymptotic contribution when the saddle point is close to the supporting

point should be expressed as [12-14]

+ , (16)

where E'g is given by equation (12) with R(O)l, Et is the field of the

transitional reaion

up

e0 3 cli e e. 'g-., ,.UiP¢ gF

sinOo'&,( - ,2k,P)" I D(1(;)7)
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where

@ .in(0, - ) (18)
sin2O,

- -, coal / (19)

(20)

where D1/2 (5 ) is the 1/2 order parabolic column function of the complex

parameter 3. The range of the transitional region is determined by the

magnitude of the complex parameter. Therefore, the parameter R can be

defined as the "numerical distance" of x and the nLmerical results show

that x=2 is a criterion for the judcement:[ 12 ,1 3 ] when x>2 then the general

equation (14) can be used and when x<2 then the uniform equation (16)

should be used.

Besides the total reflection transitional region, singularities of the

complex ray field also exist in the reflection interface, the shadow

interface, the focus line. and the focus point regions. When this is the

case, an appropriate special function should be used for the smoothing-

calibration of the transitional function propagating field as described

above.

V. Diffraction of Complex Rays[15]

Diffraction of complex rays occurs at the edge, tip, or smooth convex

surfaces of the structure. Figure 6 shows a Gaussian wave incident ton Si1f

ideally conducting half-plane structure. If the complex source point field

is used to express the Gaussian wave and if the extension of the

aplicability of the theoretical equations of geometrical diffraction of

13



Fisure 6: Ecae diffraction of complex rays

key: 1 - metallic half plane
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linear source to the complex space is made, then the complex ray

diffraction field can be obtained.

VjsxkP. p (21)

where 0c is the complex incident angle at the edge of the half plane, G is

the diffraction angle at the observation point, and (h,9o ) is the complex

diffraction coefficient

%/I - 9W I - siax

s(22)

Obviously. if the observation point is located within the transitional

reoion of the reflection interface or the shadow interface (o->0), then

the above equation loses its applicability. When this is the case, then in

the wave spectrum integration formula, the saddle point is very close to

the supporting point and the simple geometrical diffraction theory can not

be applied and the uniform diffraction theory and related equations should

be used for the analysis of the complex space.

The complex ray theory has been used in the analysis of various

diffraction problems involving waves such as the curved-edge diffraction of

the antenna of reflectors.' )

VI. Ebpansion of Complex Rays and Superposition of Complex Source

Points [16-191

Based on the principles of complex ray theory, we can exte e ti

Wilkings-Feiner's principle and its Gilhoff mathematical expression to the

complex space[16,17] and develop a new wave expansion method.
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Considerina the two-dimensional structure shown in figure 7 and assuming

z-z' denotes the Wilkings plane, then the wave source distribution function

on this plane f(y') is

f (y')=Ay,#- , "  ,

(23)

The field at observation point P can be expressed by the Gilhoff equation

if the integration expression of the source distribution is known

I "( ) f (Y,) , (24)

where

P inv'(y-.y')" + (g- g')"

(25)

Obviously. f(y') is the weighted function of the source distribution. After

Fourier transformation, equation (24) can be expressed in terms of the

integration of plane wave spectrum

E=JJ( FM

(26)

where F(n) is the plane wave spectrum function corresponding to the field

distribution f(y').

If the Wilkings plane is extended to the complex space or if the sub-

wave source is extended to the complex Wilkings source, then from (24) one

can obtain

(27)

where P is given by equation (3), W(y') denotes the weighted function of

the superposition of complex source fields (sometimes called the expansion

coefficient of complex ray). Since complex source field is a Gaussian-type

16
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wave field with fixed direction and the energy is concentrated around the

axis of the wave front, the integration limits in equation (27) can be

reduced from (-oo. o) to a smaller range (yl',y 2'). Also the discrete

complex source field can be used to replace the continuous integration in

equation (27) and, therefore, simplify the numerical process. Furthermore,

from the complex expansion of the sub-wave sources, the characteristics of

the field transitional region can be changed, [12,13] and the solution of

the transitional field region can be accomplished through the choice of

appropriate parameters and the direct application of the superposition of

complex source fields and the singularities of the field can be made smooth

w the Iitroduction of complicated transitional functions. [1 8 ]

In order to apply the complex ray expansion equation (27), the weighted

function W(y') must first be solved and then the appropriate free parameter

for expansion should be chosen. These parameters are the ones such as

Wilkings plane position z', modulus and direction of wave vector b,

expansion range (yI',y 2 '). discrete source distance Oy', and computer

threshold value ao .There have been detailed discussion on the complex ray

expansion of cylindrical waves, (17,19] and the results have been applied to

the reflection at plane interfaces. [18]

When b->O, the complex source field trarforms to the real source field,

and the expansion of complex rays transform to the general Wilkings

principle, when b->oo, the complex source field transforms to the plane

wave radiation and the integration of complex source field trwwfwme 4O.

the integration of plane wave spectrum. Hence, it can be sown that tie

expansion of complex source points is a moe general form of wave field

expansion than the source distribution integration and plane mwm spectrum

18



intearation. The latter two cases can be viewed as the special cases of the

first case.

7. Complex Ray Analysis of Radar Cross Section[20 - 22]

Based on the theoretical definition of target radar cross section (RCS)

SI i t 4XR f
&a1 (28)

one can see that the calculation of the radar cram section can be

reaarded as the calculation of the scattering wave amplitude at the receipt

point IE..I if the incident wave amplitude IEil is given. Therefore, in

principle, all the methods used to analyze scatterirg of electrtmanetic

field can be used in the calculation of radar cross section. Since the

Gaussian wave of the complex source is a very good simulation of the major

wave packet of the radar antenna. the complex ray theory can be used to

nbtain the scattering field at the target and the sirle- tation or double-

station radar cross sections.

Fixire 8 shows the calculational results of the cross section of an

intermediate medium sinale-station radar cross section. [20] Except for the

complex ray reflection and refraction on the surface of the medium,

diffraction occurs at the edge of the rounded plate and the contribution

from the diffraction should be included in the calculation if the diameter

of the rounded plate is not large. In figure 8, the solid line is the

integration results based on physical optics and dotted line is the

calculational results based on complex ray theory. The distance of the

observation point is taken as R-1012A. From this figte. we can ee that

when the incident argle is less than 500, within the range of the major

19
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petal and the near petal, the difference in the results based on these two

methods is less than 3db.

For the larqe-diameter concave cavity structure such as the gas inlet

and outlet duct, if the radar cross section is calculated based on the

traditional geometrical optics methods, then it is required to form a set

of incident rays on the diameter surface awd the distance between these

rays should be less than O.2A. Obviously, a lot of computer time would be

necessary to analyze the reflection of a few tens even hundreds of

geometrical rays. If the analysis is conducted in the guided-wave fashion.

then since the dimension of the wave auide is far greater than that of the

radar waves, the expansion and analysis of a few hundreds high order modes

is still not easy. If the complex ray theory is used in exparion and near-

axis approximation is used in simplification of the problem, then tracing

of a few reflection paths of the complex rays will be sufficient to

establish the field distribution on the lip surface of gas inlet duct or

the field strenath at the reception point can be determined and then the

radar cross section of the target can be calculated. The RCS analytical

results of a curved gas inlet duct has been completed. [21] The results

based on complex ray expansion were compared with those based on other

methods.

The radar cross section of antenna and antenna cap can also be

calculated by the complex ray theory. [221 The structures of antenna and

antenna cap with low RCS can be optimized in this way.

VIII. Concluding Remarks

The complex ray theory has been proved to be an efficient way of

analysis of high frequency field scattering. This paper discusses the

21



application of this theory under the conditions of uniform and layered

medium. These are just some simple conditions. However, its application is

not limited by these conditions. In the non-uniform, dissipated, or

directionally-conducting media, the complex ray theory still has very

important applications. Using the complex ray theory, not only can the

radar cross sections of the metallic parts such as the body and wings of

the vehicle be calculated, the reflection and transmission of the radar cap

and cabin hoods can also be analyzed. Not only can the scattering

contritution due to the key scattering parts such as antenna and gas inlet

duct be calculated, but also the effect of RCS reduction after application

of wave-absorbinE materials can be analyzed. So far, this topic has been

under intensive study worldwide and. in some areas, significant

a-comp:Sn imer:ts have been made.
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